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SUMMARY 26% J
Cosmology is confronted with the problem of explaining
how large-scale structures originated in the universe.

Within the framework of conventional theory two hypotheses

are possible. In the primordial structure hypothesis

structural differentigtion of a rudimentary form is inlaid
within the universe from its earliest moments, whereas in

the instability hypothesis structure evolves naturally from

small initial disturbances. It is known that according to
linearized gravitational theory, small disturbances in an
expanding universe grow extremely slowly. This theory is
outlined and furthermore it is shown that large structures
are unlikely to form as the result of thermal instabilities.
Thus, the instability hypothesis is in serious difficulty
and it is proposed that we should re-examine the primordial
structure hypothesis. One possibility is that differen-
tiation into structural domains is a natural state of matter
at very high densities during the earliest stage of expan-

sion of the universe.




1. DISCUSSION

The main emphasis in cosmology is on models of an
idealized universe containing a uniform and perfect fluid.
Confronting cosmology, however, is the task of bridging
the gap between the featureless models and the Physical
universe with its structural differentiations. It is this
aspect of cosmclogy that we shall discuss.

The astrophysicist studies, among other things, the
evolution of galactic structure and the condensation of
stars out of gas clouds of irregular density and motion.

He investigates configurations of matter whose mean density
is large in comparison with the mean density of the universe,
and his investigations frequently begin where those of the
cosmologist end. The onus is on the cosmologist to present
a convincing account of why in the first place a différen—
tiated universe exists, and how it is possible that there
are regions of relatively large density favorable to the
formation of galaxies and stars.

A rational account of the origin of celestial structure
involves the laws of physics and the initial conditions.

At present there are two outstanding hypotheses concerning

the initial conditions: the primordial structure hypothesis

and the instability hypothesis.
The primordial structure hypothesis presupposes that

structural differentiation, most likely in a rudimentary




form, originates with the universe. This hypothesis is as
old as mythology and conceives that an inherent structural
design is an indispensable part of the universe. In the
course of time the differentiation is enhanced and the
structure develops complex detail in accordance with the
known laws of physics. We shall show that it now appears
necessary to reconsider this hypothesis in the light of
modern knowledge.

At the other extreme, the instability hypothesis
dismisses the idea of special initial conditions and declares
that the laws of physics are fully capable of explaining
the origin of structure. This hypothesis, which is as young
as the theory of gravitation, states that the universe is
unstable against small random perturbations. It possesses
several attractive features: +the smallness of the distur-
bances allows us to work initially with a linear theory;
also it refrains from pleading for special ad hoc boundary
conditions and thus conforms with the scientific spirit of
stressing the importance of physical processes.

Two requirements must be satisfied before the instability
hypothesis can be fully accepted. The first requirement is
that structure must emerge out of amorphous initial conditions
and possess the correct morphology. Clearly, in a normal
mode analysis all possible wavelengths must not grow at the

same rate. On the other hand we do not want a universe




containing obJjects the size of tennis balls nor a universe
broken into only a few large fragments. We do not observe
any pronounced macroscopic anistropy and must therefore
deduce that wavelengths of cosmic dimensions are relatively
quiescent. Thus only a limited range of time-growing wave-
lengths is required to lay down the foundations of galactic
and stellar structure. The time dependence of the various
wavelengths must also tell us whether structure develops
by fragmentation or clustering, or by a combination of
both processes. If the longer wavelengths race ahead and
lead the field then protogalaxies or even larger distribu-
tions of matter first form and provide an environmment cf
enhanced density in which subsequent fragmentation can
occur!., But if the short wavelengths take the lead, then
small scale condensations first form and by subsequent
interactions cluster together into larger and larger systemsZ.
The second requirement is that the rate of growth of
the perturbations must be adequate. If p is the density
and &p the perturbation in density, then the characteristic
growth time of the contrast density p = 6p/p must be short

compared with the age t of the universe. In other words

t 5&‘->> '
S 3t 1. (1)

Let us suppose that by some means or other we obtain an




equation of the kind

b= (t/t) (2)

for a given wavelength, where |, is the initial amplitude

of the fluctuation at time t,. Then according to equa-

tion (1) we require m >> 1. Now the instability hypothesis
must explain how structure is created and therefore it cannot
assume that the required structure pre~exists in the initial
conditions at reduced amplitude. If this is the case then
we are back to the primordial structure hypothesis and
equation (2) accounts for no more than mere enhancement.

The initial conditions are therefore structureless and
consist only of random fluctuations. Statistical fluctua-
tions of large numbers of particles are exceedingly small;

for N particles

(3)

and for a galactic mass consisting of hydrogen o ~ 10 3%

The density of galaxies is several orders of magnitude greater .
than the mean density of the universe and therefore eventually
g >> 1. Whatever reasonsble value is assumed for t/t, in

equation (2) it is obvious that m is an outlandish number.

As an example, if t/to = 1010 then m > 25, More modest




values of m will mean that there is enhancement but not
outright instability. For a cleasr case of instability we

require exponential growth:

b= poexp(t/T), (4)

and for a galactic mass the e-folding time is T < t/100 and
can be as long as several millions of years.

We turn now without further ado to a more detailed
examination of the instability hypothesis. We shall show
that gravitational instability fails both the requirements
that have been mentioned above. Without specifying any
particular physical mechanism it is found that extreme
thermal instebility yields a barely adequate growth rate
for the formation of galactic masses. This result is inter-
esting but can scarcely be accepted until a physical basis
is found for the occurrence of such processes cver large
ranges of density. Finally, we consider very briefly the
primordial structure hypothesis and suggest that it should
be updated and reformulated into a more acceptable proposi-

tion.
2. GRAVITATIONAL INSTABILITY

In its unperturbed state we assume that the universe

is isotropic and homogeneous and use the line element




R2
E ()2

ds? = dt2 - (ar® + r2a0=), (5)

d0® = 462 + sin“8a¢®, where r, 9, ¢ are comoving spherical
coordinates and u = O, £ 1 is the curvature constant; also,
that the cosmic fluid density p is uniform and the pressure

P is isotropic. If variations in pressure and density are

related by the expression
6p = (v-1)c%6p, (6)
then for constant v
p = (v-1)c®p, (7)
and 1 S v £ 3. The energy-momentum tensor is
Tt = vpcRg, ulu — 6% (v-1)c%p (8)
J k] J ’

where u” is the fluid four-velocity, and in comoving coor-

dinates
= - (v-1)c3p. (9)

Using Einstein's equation




i im i, _ 81G i
Rj—§6ij+6jA—c2 T3 (10)

where A is the cosmological term, we obtain the equations
R® = #(8mGp + A)R? — uc?, (11)
oRR = VARZ - (3v-2) (& + ne?), (12)

and dots denote time derivatives. Let

dt _ 2 R
x - 3va o (13)
B, = 8nGpR3v/3c2, (14)

where B,, is constant, and it follows that

w=0: R= (8, )

: v ,
w =+1l: R = (Bysin® x)l/(gv-Z), (15)
#w=-1: R = (Bysinh® X)l/(sv-a).

We now consider perturbations in the cosmic fluid that
are accompanied by small departures from the Robertson-
Walker line element (5). The metric tensor g 5k becomes

+ . . .
ng hjk’ where hjk and its derivatives are assumed to be




small. Tt can be shown® that to a first order the con-

tracted Riemann Christoffel tensor is given by*

* A more detailed treatment is given in reference 3.
The present paper supplements and extends the discussion on

the origin of structure found in this reference.

ik, m m m i _ i ik
g (b g = My gy = Byyn) + g by, = 2R + mRS), (16)
in which a semicolon denotes covariant differentiation.
This equation is similar to that derived by Lifshitz®.
From equation (10)
RY = — (8nG/c2)(Dr - $65T) + 6%A, (17)
J J J J
6Ry = — (81G/c?)s (1] - 3631), (18)

and therefore all that remains is to determine 6T§. It

can be readily shown that

8T = (4-3v)c=sp,
§TE = c26p,

vePp (hg, + gaaéua),

5T°
o




6T§ = — (v-1)c36p,
(19)
a pa—
8Ty = 0,

where o, =1, 2, 3, @ # B, and there is no summation.
Equation (16) is a set of ten equations for determining the
ten quantities: 68p; six of the hé (since four can be elim-
inated by coordinate transformations); and éua(éuo = -éh@)e

At this stage it is helpful to consider the analogous
case of the Newtonian equations of hydrodynamics. The
perturbed fluid motion is governed by the gradients of the
pressure and gravitational potential {§, and hence the vel-
ocity is conserved. But the vorticity is zero prior to
the perturbation and is therefore permanently zerc, and the
motion is irrational. Thus in the Newtonian treatment the
equations of motion and continuity and Poission'scequation
are a set of three equations for the determination of &p,
¥, and ¢, where ¢ is the velocity potential.

If we adopt hyy = O, and demand that the motion is

irrotational:

o 1 3
gaaéu T e2 5%5 ?

o'
it is found that hB and hg —-hg are propagated independently

of the fluid perturbation. These quantities are zero in the



unpefturbed state and therefore it can be assumed that they

are permanently zero without affecting the fluid disturbance.

Hence, all diagonal components of h3 are zero, and we have

hy = -hi = -hZ = -n3. (20)

Ir h@ is written as 2¢/c2, the perturbed line element has

the simple form

o -2
as? = (1 + 2yc”®)a2 - % %:;%(;2 ) (ax®+r2a02). (21)

Equation (16) now reduces to the three equations

UmGe28p = -3RR M+ (cBV2-2AR2-3R2+3uc2 )R Ty, (22)
WnGdp = ¥ + LRR MY + (2RR + B2 - wuc2)R™%Y, (23)
1 a4 _ 2
= & (BY) = nG(p + p/c?)y, (2k)

for determining &p, ¥ and . In the important case when the
pressure is small compared with the energy density these
equations become

¥+ BRRTTY - (392 — AR® + 2uc)R Ty = O

UGRZ6p = V3, (25)

1 da
R = (Ry) = LmGpep.

- 10 -




where cg = dp/dp, and cg is the speed of sound. They are

identical with those derived by the Newtonian treatment®.
For arbitrary v in eguations (6), (22)-(23) give

i+ () By o L (0-1)ev2- Gu-2)ar (6v-b)nc2ly=0 (26)

In the above equations V2 is the Laplacian in space of

curvature n = O, £1. By separating the variables and using
VEy + K%y =0, (27)

it can be shown that the eigenvalues are:

n=0 k® =v?, vZ 2 0,
n o= +1: k% = y(y+2), Yy = 1,2,3... (28)
no= -1 k? = Y2+l: YZ z 0,

We first consider Einstein's. ' static universe of

=3
1]
e e
1
o
x
]

+1, and therefore

-
|

= ¢2(3v-2)/VRZ, (29)

from equation (12). Equation (26) is now

§+ 5 [ylv) (1) + (we2)(v2 vy = o, (50

- 11 -



and therefore
b= op o expt G (2-v) Gu-e vt - ylys2) (1175, (31)

It is well known that the Einstein model is unstable against
perturbations in R. When R + 8R is used in equation (12),
where R is the equilibrium Einstein value, it is found that

to first order
58 = (3v-2)cR 8R,

and therefore

/

6R = expt =(3v-2)" "¢, (32)

An advantage of the Lemaitre model, so it is argued, is that
it possesses an extended or infinite past in a quiescent
Einstein state during which disturbances can grow exponen-
tially according to equation (31). But for 1 < v < & it is
seen from equation (32) that SR grows more rapidly than any
of the modes vy = 1,2,3... The rates of growth are equal in
a cold universe of v = 1, in which the velocity of sound is
zero, and 6p < 8R <« exp ct/R. Thus we see that the depar-
ture from the global equilibrium state in such a universe

is Just as likely, or even more likely, than the formation




of condensations. The growth of condensations must therefore
be considered within the framework of a nonstatic universe.
In the following we suppose that A 1is zero. By using

the transformations (13)-(15), equation (26) becomes, for

“n = 0:

o+ (Bv-2) Z[h(v-1)K2 - gz o, =0, (33)

o = W§V/(3v-2)’

for u = +1:

o+ (3v-2)"C[h(v-1)K2 + (3-3v)2— -2 Ty = 0, (34)

1 sin®x
a1 = §(sin X)3v/(§v-2),

and for # = =-1:

ally + (3v-2) Fh(v-1 K= (he3v)2= 2 lay = 0, (55)

oy = y(simn x)3/ 3V2),

where dashes denote derivatives with respect to ¥x. For
any value of k% and X, and L £V s %, it is easy to see
that a%/an have maximum positive values at v = 1. In other

words, the growth of the o, is maximum in a cold universe

- 13 -



of zero pressure.

This is of course what one would expect

and occurs when the fluid consists of dust particles or other

bodies having no peculiar motion of their own.

great

The growth of disturbances in a cold universe is of

interest. Should it turn out that even in this

extremely favorable case the growth is too slow to establish

a differentiated medium, then the instability hypothesis is

in serious difficulty. For v = 1, equations (33)-(35)

become

= +1:

and their solutions

where

= 0O ]
= +1: ¥
= =1: ]

A, and By are

¢+ 6Ny = o, (36)
§" + 6cotxy’'— 8¢ = 0O, (37)
{" + 6cothxy '+8¢ = 0, (38)
are
= AX ° + B, (39)

(sing)™*[A1P2(1 cotx)+B1Q2(1 cotx)], (40)

(sinhx)-sz_lP;(cothx)+B-lQé(cothx)]j41)

constants. These results give the maximum

growth possible for ¢ in expanding and contracting models of

the universe, and the contrast density 6p/p « yR 1s shown in

-1 -
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figure 1 as a function of X.
The # = 0 model is the simplest of all to study and
possesses features representative of all three models. In

this model
-3/2
6p/p = AR + BR, (42)

and therefore 6p/p2/3 is constant or diminishes in an expanding
universe, and ép/ps/2 is constant or diminishes in a contracting
universe. Neglecting the decaying term, we have that in an

expanding universe

o

(2 = afe = o (43)

Strictly speaking, the condition v = 1 for the maximum rate
of growth of the gravitational potential ¢ is not necessarily
also the condition for the maximum rate of growth of the con-
trast density. The maximum possible rate of growth of the
contrast density for arbitrary v is only slightly different,

however, from equations (39)-(41).

3. THE INSTABILITY HYPOTHESIS

We now consider whether these results satisfy the

requirements that were discussed earlier., The absence of

- 15 -




exponential growth is typical of all nonstatic models. A
comparison of equations (2) and (43) shows that m = § falls
a long way short of the large quantity desired. Our conclu-
sion is that an expanding universe does not possess any pro-
nounced instability. This conclusion is reinforced by a
consideration of Jeans' theory of gravitational instability

in which the unperturbed state is assumed to be static.

Acceording to this theory the maximum possible rate of growth
gives
& t
80 « oxp & (4)
p T
-1/2 .
where T = (4nGp) . But T is the order of the age of the

universe and therefore Jeans' theory cannot satisfy the in-
equality (1). In an expanding universe the rate of growth
is even slower than that given by Jeans' theory.

It is required that during expansion the cosmic fluid
fragments into islands. The gravitational potential of a
disturbance must therefore increase with time and attain a
value of § ~ GM/A, where M and A are the mass and radius of
an island. The inadequacy of the gravitational theory to
explain the origin of structure is shown clearly by equation
(39) where it is seen that even in a cold expanding universe
the gravitational potential of a disturbance cannot increase.

Equations (40)-(41) for u = £l give essentially the same results.



For the sake of achieving maximum growth we have assumed
a cold universe of zero pressure, and as a result all wave-
lengths have equal growth rates. The inclusion of pressure
slows down or inhibits the growth of shorter wavelengths and
there is no apparent mechanism whereby a limited range of
wavelengths receive preferential treatment. If the growth
were larger the results would be catastrophic and the universe
would be violently unstable on the cosmic scale. We come
therefore to the conclusion, previously arrived at in many
different ways by various authors, that gravitaticnal
instability fails because perturbations grow too slowly and
lack structural content.

At first glance our presentation of the instability hypoth-
esis appears to contain several loopholes. The motion and
properties of the cosmic fluid have been simplified and are
obviously not very realistic. It seems plausible, however,
that the inclusion of rotational effects will inhibit even
further the formation of condensations. The neglect of rota-
tional motions is a serious omission that must be corrected
the moment a mechanism for adequate growth has been discovered.
An initial state of turbulence® possesses many attractive
features but forces us inevitably into the Jaws of the primor-
dial structure hypothesis. In addition we have considered a
cosmic fluid of only rudimentary properties. Here agaln it

seems unlikely that departures from a perfect fluid =- in which

- 17 -




the pressure is a scalar - will favor an increased growth.

In fact, the growth of perturbations in a fluid which has a

real velocity of sound (i.e., dp/dp > 0) must always be less

than the expressions we have derived for a pressureless fluid.
Let us suppose that the instability is thermal in origin

and not gravitational, and as a result { has the desired rate

of growth of

iR
¢>>R' (45)
Equation (26) is then approximately )
2
§+ R 5y <o, (46)

a ®

and the cosmological and curvature terms are omitted because
they are unimportant and cannot effect the condition (45).

Furthermore, we assume that the expansion index n, defined by

(47)

i ot
218
I
B

is constant in an interval of time t; to t. In general,
n <1, and in the early stages of the universe when the cur-
vature term is unimportant,n = 2/3v. The solution of (L46)

is

- 18 -




v= T, o (Capja £,

in terms of the Bessel functions of imaginary argument and
R = bt". Condition (45) is satisfied when the argument is

large, and hence

, » ., 1=n
vev e = { (8D i i) b

where § = {§, at t = t1, and also R/k = \ is the wavelenghth

(divided by 2m). If t = t, + At, then to a first order

¥ =1, exp:i:{(-%ﬁ-)é%t—}. (48)

The age of the universe is t ~ (3/8nGp )é, and for a mass

Mo 4023 /3 we have

(49)

Because dp/dp is negative the speed of sound is imaginary;
a region of space of density p + 6p has now a lower pressure
than the region of density p - 8p, and the pressure gradients
novw favor the formation of condengations. The question is:

Can they succeed? Without specifying in detail the cause and

- 19 -
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nature of the negative gradients it is possible to distinguish
two classes of pressure instability.

In the first class we have a change of state such that
dp/dt < 0 and dp/dt > 0 during expansion as shown in figure

2. From equations (11) and (42)

Ap

At
P = TE

and therefore

>3

A t
where y = 35§2 T -

We observe that the maximum possible value of y is unity when

At =t, Ap = p = 4pc®. From equation (49) it follows that

12 G
x_?;?' L . (51)
In terms of p and M this result becomes
(48)=a>M2p = ysx-sce.

Now according to equation (4) x is at least of the order of

10° and therefore

- 20 -




M- z 3 -3
QT) p < 10Py° gem ) (53)
©

where Mg is the solar mass and y < 1. Thus stellar masses can
in principle precipitate out when the density of the universe
has dropped to less than 10°y> gcm-s, and galactic masses of
M= lOloMb when the density is less than lO-lBy3 gcm-s. For

a typical galactic density of 10-23 gcm-? y must have a value
of at least 10’2. Even if the galactic condcnsation time is
At ~ t, we observe from equation (50) that as much as 1% of
the mass at its final density must consist of relativistic
particles. For a large cluster of galaxies the problem is
even more severe.

In the second class of pressure instability we assume
that there is radiation cooling either by photons or neutrinos,
such that a region of p - &p 1s heated at the expense of the
region p + 8p, such that where dp/dx> > O we have dp/dx™ < O.

By writing
2 2
-dp _ ¢ (L)
a Y& \bt./’
_ Ap ’At:)z
vy & )
we obtain the same results as before.

On the face of it, without specifying any physical

mechanism, thermal or pressure instability can provide an

- 2] -
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adequate rate of growth for stellar masses and a barely adequate
rate of growth for galactic masses. The main difficulty is
to discover an effective physical mechanism that can operate
over a large range of density. The trouble is that at high
density, where one might feel safe in claiming bizarre prop-
erties for the fluid, the universe expands rapidly and the
time available is too short for pronounced growth. Over most
of the density range radiation cooling at its best will merely
make the fluctuations isothermal and therefore dp/dp will be
positive. The question of structure raises further difficulties.
As the universe expands and the density diminishes we can
imagine that different groups of wavelengths in succession are
time-growing owing to various physical processes. Thus for
each process y is small and therefore, provided the process
permits, only relatively small masses have time to become
differentiated. Given the right process equation (53) shows
that planetesimal masses could form easily (and perhaps this
accounts for their origin), but it is quite impossible to see
how galactic masses can be carved out of the cosmic fluid by
any reasonable process. Until a convincing physical basis
can be found, and it is shown that an acceptable hierarchy of
structures emerges out of an amorphous background, the thermal
instability approach must be regarded as unfounded speculation.
It is suggested7 that certain outstanding events, such

as quasi-stellar radio sources and violent outbursts in galaxies,

- 20 -




are the result of the expansion of objects from a radius close
to their Schwarzschild singularity. It is visualized that in
the early stages of the universe there occurs fragmentation
into fluid cells which then remain partially encapsulated in
the metric. To an internal observer the cell continues to
expand and rapidly becomes an astronomical object; but to an
external observer the cell lies dormant for a long period of
time and is scarcely observable, and then bursts forth as a
youthful and vigorous object. For a mass M of radius A close

to the Schwarzschild singularity, we have

MG
v (55)
Now whatever the cause of the fragmentation it must involve

Propagation over a distance A which cannot exceed ct, where

\ M%"( 2 1/2
t ii(the age of the universe. Therefore A < ct < (3c*/81Gp ),

and for M = hﬂpXS/B, it follows

2 > S l, (56)
and in principle the condition (55) is possible. Alternatively,
we could argue that in the comoving coordinate system the maxi-

mum radial velocity is ¢, or

AR < Re,

- 23 -




and from equation (11) we again derive the relation (56). A
glance at equation (51) shows, however, that within the frame-
work of the instability hypothesis encapsulation in the metric
is impossible, for always 2MG/>\c2 << 1. If encapsulation does
occur, then it must be studied on the basis of some other

hypothesis.

4. PRIMORDIAL STRUCTURE HYPOTHESIS

We are confronted, so it seems, with a choice between
an instability hypothesis which explains very little and a
primordial structure hypothesis that leaves very little to be
explained. We are driven by brute force to the conclusion
that structure is implicit in the initial cosmological
conditions and is not implicit in the known laws of physics.
The origin of structure is thus apparently shrouded in the
same inscrutable mystery as the fiat that created the universe.
This pessimistic view, however, is entirely unjustified
and is a confession of our ignorance of the universe particu-
larly in its earliest stages. It is quite possible that
structural configé%tions with rotation are a necessary property
of matter at exceedingly high densities. In this way the
primordial structure hypothesis is not a policy of despair,
but on the contrary it opens up a vista of exciting possibili-
ties in which the initial conditions are determined naturally

either by laws of physics which are as yet unknown or by the

- 24 -




extrapolation of the known laws of physics to extreme conditions.
Almost nothing is known about the universe during its earliest
moments. We can expect that particle interactions are compli-
cated by gravitational effects and quantum fluctuations of

the metric. Possibly classical theories of the universe at

very high density are inadequate or even invalid? If indeed
large scale structures such as the galaxies derive from
primordial conditions then cosmology must grapple with this
problem in order that eventually we shall understand the

origin of structure in the universe. |

CT—X;tronomy with its large telescopes has revealed the
problem, and quite possibly cosmology must turn to high energy

physics and its large accelerators for the solution.

-25 -




Legends to Figures

Figure 1. Curves increasing from left to right show the
growth in amplitude in an expanding cold universe; those in-
creasing from right to left are for a contracting universe.
A, =B, =1 in equations (39)=-(41).

Figure 2. Illustration of dp/dp < O in a given range of

density.
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